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An experimental study of the thermal response to a stepwise rise of the wall tem-
perature of two-phase near-critical SF6 in low gravity for an initial temperature
ranging from 0.1 to 10.1 K from the critical temperature is described. The change
in the vapor temperature with time considerably exceeds the change in the wall
temperature (overheating by up to 23% of the wall temperature rise). This strong
vapor overheating phenomenon results from the inhomogeneous adiabatic
heating process occurring in the two-phase near-critical fluid while the vapor
bubble is thermally isolated from the thermostated walls by the liquid. One-
dimensional numerical simulations of heat transfer in near-critical two-phase 3He
confirm this explanation. The influence of heat and mass transfer between gas and
liquid occurring at short time scales on the thermal behavior is analyzed. A model
for adiabatic heat transfer, which neglects phase change but accounts for the
difference between the thermophysical properties of the vapor and those of the
liquid, is presented. A new characteristic time scale of adiabatic heat transfer is
derived, which is found to be larger than that in a one-phase liquid and vapor.
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1. INTRODUCTION

As the liquid–vapor critical point (CP) is approached, many thermody-
namic and transport properties of pure fluids exhibit striking behavior [1].
Notable examples include the divergence in the isothermal compressibility
and the vanishing thermal diffusivity. In fluids confined in a constant
volume, heat may be transferred by both thermal diffusion and adiabatic
compression. This adiabatic compression is called ‘‘the piston effect’’
because an expanding hot boundary layer acts as a piston to compress the
interior of the fluid, increasing its temperature [2–6]. In pure fluids heat
diffusion is slower, whereas the piston effect is faster, as the CP is
approached. The latter process becomes dominant in near-critical fluids,
leading to very fast thermalization. The adiabatic nature of the fast thermal
equilibration in supercritical homogeneous fluid samples is now well estab-
lished, after being confirmed by numerous experiments performed on the
ground [7, 8] and in weightlessness [9–12], where convection is absent.

The thermal equilibration of near-critical stratified one-phase or
two-phase fluids is more complicated to characterize. As first theoretically
predicted by Onuki and Ferrell [5], then numerically and experimentally
observed in stratified one-phase fluids [7, 13] and two-phase fluids [8, 14,
15], the inhomogeneity of the thermodynamic properties of the fluid leads
to an inhomogeneous temperature response inside the sample; i.e., the adia-
batic heating induces temperature gradients within the sample. A striking
consequence of adiabatic heat transfer in stratified fluids is the occurrence
of an overshoot of the temperature in the region of lower density beyond
the temperature of the thermostat when a positive temperature step change
(initial temperature Ti, final temperature Tf > Ti) is imposed by the ther-
mostat. This phenomenon was first observed in a two-phase fluid during an
experiment dedicated to the study of near-critical ‘‘boiling’’ [16]. A more
detailed study was performed [17] in pure SF6 using the Alice 2 facility
onboard the MIR station during the French–Russian Perseus mission
(February–August 1999), as part of the French–American GMSF scientific
program. This transient phenomenon would be unthinkable for purely dif-
fusive, isobaric equilibration processes, since it would violate the second
law of thermodynamics. On the other hand, when the volume of the fluid
sample is constant, this phenomenon is possible even at large distances
from the CP. Indeed the temperature change in the fluid is due not only to
heat diffusion but also to adiabatic compression, i.e., to the work done by
pressure changes that are subjected to mechanical equilibrium conditions
and not to thermal equilibrium conditions.

In Section 2 we briefly present experimental observations of the vapor
overheating phenomenon. In Section 3 we investigate the influence of the
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distribution of the phases inside the cell on the magnitude of the gas
overheating phenomenon by means of a one-dimensional numerical model
developed by one of us [8] and explain why such a large vapor overheating
could be measured in low gravity. In Section 4, we present a simple analy-
tical model of the characteristic time of the piston effect tPE in two-phase
near-critical fluids, valid when vapor is not in contact with the walls of the
thermostat. This model accounts for the difference between the thermo-
physical properties of liquid and those of vapor, and results in an expres-
sion for tPE slightly different from its usual form established for homoge-
neous one-phase near-critical fluids by Onuki et al. [2].

2. EXPERIMENTAL INVESTIGATION OF TWO-PHASE HEAT
TRANSFER

2.1. Experimental Apparatus

The Alice 2 facility, whose detailed description is given in Ref. 18,
integrates a management system for diagnostics and stimuli with a regula-
tion system that controls the temperature of a sample cell to within a few
tens of microkelvins. The experimental cell used for this study was made of
a CuCoBe alloy. The internal fluid volume was a cylinder (12-mm internal
diameter, 6.7-mm thickness) sandwiched between two parallel sapphire
windows. The inner surface of one of the sapphire windows was coated
with a dielectric that forms an interferometric mirror. A Yellow Spring
Instrument Co. 44900 thermistor (2-s rise time, 100-mK accuracy) imbedded
in the sample cell unit near the fluid volume was used to follow the tem-
perature evolution of the cell walls (labeled TW).

The cell was filled with pure SF6 at its critical density (±0.1%). The
initial two-phase distribution in low gravity consisted of a gas bubble
surrounded by the liquid that wetted the walls of the cell, whose inter-
ferometric image is shown in Fig. 1a. The bubble touched the sapphire
windows, and its cross section is shown schematically in Fig. 1b. Three
Thermometrics B10 thermistors (10-ms rise time, 500-mK accuracy, 0.2-mm
diameter) were placed in the cell volume, allowing local measurements of
the fluid temperature. Two of them (labeled Th1 and Th2) were located
close to the cell wall (roughly 1 mm) and were always observed to be in the
liquid. The temperatures measured by Th1 and Th2 are labeled T1L and T2L.
The third thermistor (Th3) was mounted in the center of the cell, so that in
the usual low gravity environment of the Mir station (residual acceleration
of the order of 10−4g, where g is the acceleration of Earth’s gravity), the
gas bubble, of volume fraction 0.5, was always found to contain thermistor
Th3 (see Fig. 1a). The temperature measured by Th3 is labeled TV. The
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Fig. 1. (a) Image of the interferometric cell during a +100 mK quench (Ti=Tc−10.1K)
looking through the cell window. Circles: positions of thermistors, labeled Th1, Th2, and
Th3. Solid line: thermistor thread. (b) Schematic cross section of the experimental cell.

measuring frequencies were 25 Hz for T1L, T2L, and TV and 1 Hz for TW
during the first 5 min following the quench, then 0.1 Hz during the next
55 min. The image of the sample obtained through the Twyman–Green
interferometer was recorded by a CCD camera at a frequency of 25 Hz.

2.2. Observation of the Gas Overheating Phenomenon

The properties of the vapor and the liquid phases vary according to
universal power laws with the critical temperature difference, Tc−T [1]
(T is the temperature, Tc is the liquid–vapor critical temperature). We per-
formed the heat transfer experiments relatively far from the CP so that we
could take advantage of the large thermophysical differences between the
gas and the liquid to magnify the difference between the adiabatic
responses of each phase.

A series of positive wall step changes in temperature were performed
with DT=Tf−Ti=100 and 50 mK for Ti ranging from Tc−10.1K to
Tc−0.1K. A wall temperature rise of amplitude DT consisted of a sharp
linear increase in TW up to 80% of DT in less than 10 s, followed by a
smooth evolution up to the final temperature Tf. As an example, the evolu-
tion of TW, T1L, T2L, and TV during a TW rise of DT=+100mK from
Ti=Tc−10.1K is shown in Fig. 2. During each rise of TW the temperatures
measured in the liquid, T1L and T2L always remained lower than TW. On the
other hand, before the end of each rise of TW, TV passed well beyond T1L
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Fig. 2. Temperature rise at the cell wall, dTW, in the liquid,
dT1L and dT2L, and in the vapor, dTV (dTX=TX−Ti, i=L, V, W),
during a wall temperature rise of amplitude DT=100mK
from Ti=Tc−10.1K. Inset: Maximum reduced vapor overheat-
ing (dTV/dTW)MAX, expressed in percentage, as a function of
Tc−Ti. Squares: DT=100mK. Triangles: DT=50mK. Solid
lines are a guide for the eye.

and T2L and, more strikingly, also well beyond TW. To compare the gas
overheating detected during rises of TW of different amplitudes, the tem-
perature rise in the gas dTV was scaled to the temperature rise of the cell
walls dTW (the rise of any temperature TX is defined as dTX=TX−Ti), and
the behavior of its maximum (dTV/dTW)MAX as a function of Tc−Ti is
plotted in the inset in Fig. 2. It exhibits a maximum of 123% around
Tc−Ti % 5–7 K.

The vanishing differences in thermophysical properties between gas and
liquid at the CP imply that, asymptotically near the CP, vapor and liquid show
the same thermal response. On the other hand, far from the CP, the efficiency
of the adiabatic heating is reduced and the heat transfer is mainly diffusive,
a situation that prevents the gas overheating. The existence of a maximum
for the gas overheating at T < Tc is then due to the competition between an
increasing efficiency of the adiabatic heating process and a decreasing differ-
ence of behavior between gas and liquid as the CP is approached.

3. INFLUENCE OF THE PHASE DISTRIBUTION ON
OVERHEATING

We propose a qualitative explanation of the gas overheating phenomenon
and discuss the influence of the phase distribution inside the experimental

Thermal Response of a Two-Phase Near-Critical Fluid in Low Gravity 107



cell on the magnitude of the vapor overheating using the results of one-
dimensional (1-D) numerical simulations.

3.1. Qualitative Explanation

During the adiabatic heat transfer process, the pressure increase due to
the expansion of the fluid heated at the boundary can be considered as
homogeneous within the sample on time scales much longer than the time
of flight of sound waves.

During the short period of efficiency of the piston effect, neither heat
nor mass can be transferred between vapor and liquid initially at coexis-
tence because of the weak thermal diffusivity near the CP. Onuki and
Ferrell [5] pointed out that during the period of efficiency of the adiabatic
heating, liquid and vapor should behave as if they were monophasic and
that the temperature increase in the liquid dTL and vapor dTV should be
isentropic such that

dTV
dTL
=
(“T/“P)VS
(“T/“P)LS

(1)

Since (“T/“P)VS > (“T/“P)
L
S , the vapor should be more rapidly heated

than the liquid. This argument explains why the vapor temperature can
exceed the liquid temperature. It is the phase distribution that permits the
vapor temperature to exceed the cell wall temperature, as discussed below.

In a low-gravity environment, due to the perfect wetting of the liquid
on the solid walls, the vapor forms a bubble that can be almost completely
isolated from the thermostated cell walls by the liquid if particular geome-
trical conditions are satisfied (cell volume close enough to the spherical
geometry, no perturbing effect of the sensors [15, 17]). This phase distri-
bution is schematically shown in 1-D in Fig. 3b. On Earth, the buoyancy
forces cause the liquid to be on the bottom of the cell, the vapor to be on
the top, and both to be in contact with the cell walls (if we neglect the thin
liquid wetting layers). This phase distribution is schematically shown in
1-D in Fig. 3a. During a temperature rise, the adiabatic heating process
stops when the temperature gradient at the wall vanishes. If every cell wall
is thermostated (as in Fig. 3a), under Earth’s gravity two kinds of hot
boundary layers (HBL) develop at the boundaries, one in the vapor and
one in the liquid. We define the bulk liquid (bulk vapor) as the region
between the liquid (vapor) HBL at the cell wall and the boundary layer
developing at the gas–liquid interface, which is heated only by adiabatic
compression. In both phases the HBL stops its expansion when the bulk
temperature reaches TW. When TbulkV exceeds TW, the vapor HBL may even
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Fig. 3. 1-D sketch of the phase distribution of liquid and
vapor (a) under Earth’s gravity and (b) in low gravity.
Gray: thermal boundary layers. Arrows show the direction
of heat transfer and the direction of expansion of the HBL.
(c) 1-D cell and phase distribution equivalent to b. (d)
Three-domain model of the adiabatic heat transfer pre-
sented in Section 4. The liquid–vapor interface is replaced
by an adiabatic, freely moving piston preventing heat and
mass exchange between liquid and vapor.

contract (cooling piston effect) if the liquid HBL continues to expand to
compensate for vapor overheating. In this simplified description, the piston
effect cannot generate any overheating.

This scenario is noticeably different from what happens when only
liquid is in contact with the thermostated cell walls (Fig. 3b), a situation
that prevails in the experiment reported in Section 2 (the contact area
between the vapor bubble and the sapphire windows is less than 6% of the
overall heating area). In this case the adiabatic heating process stops when
TbulkL has reached TW. Before the equilibration of TbulkL and TW, the bulk
vapor (as defined as the homogeneous interior of the bubble, excluding any
boundary layer) is heated more than the bulk liquid by the homogeneous
pressure increase. Since the vapor bubble is not in contact with the heating
wall, its temperature has no influence on the temperature gradient that
drives the expansion of the liquid HBL. TbulkV can thus exhibit a large
overshoot, as confirmed by the measurements obtained by thermistor Th3,
located in the middle of the vapor bubble.

3.2. Numerical 1-D Study of the Effect of the Phase Distribution on the
Vapor Overheating

To check the validity of the above qualitative explanation, we per-
formed 1-D numerical simulations of the heat transfer in the near-critical
region in two-phase 3He. This numerical simulation is presented in detail in
Ref. 8, where it was used to study the adiabatic heat transfer for a phase
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distribution encountered under Earth’s gravity, shown schematically in
Fig. 3a. The thermophysical properties of 3He were computed using the
restricted cubic model of the equation of state whose parameters are given in
Refs. 7 and 19. The similarity between the thermal responses of simulated
3He and SF6 to a rise in the wall temperature are guaranteed by the universal
thermodynamic behavior of pure fluids near their critical point.

In the 1-D simulation, the phase distribution encountered in low
gravity is accounted for by replacing the thermostated wall in contact with
the vapor (Fig. 3a) with an isolated wall (Fig. 3c); i.e., we replaced the
isothermal condition T (x=0, t)=Tf at the upper wall (Fig. 3a) with the
adiabatic condition “T/“x(x=0, t)=0 (Fig. 3c). For symmetry reasons,
the resulting 1-D heat transfer problem in the cell shown schematically in
Fig. 3c is fully equivalent to the 1-D problem, illustrated in Fig. 3b, of a
vapor layer sandwiched between two liquid layers of equal thickness in
contact with the two isothermal walls of a 1-D cell two times higher than
the cell in Fig. 3c. The phase distribution in Fig. 3c deals with one liquid–
vapor interface only and is the best 1-D representation of the 3-D phase
distribution in low gravity as encountered in the experiment presented in
Section 2.

The numerical simulations presented in the following were performed
by imposing an ideal temperature step at the wall in contact with the liquid.
The maximum of the vapor temperature was obtained at the adiabatic cell
wall. In Fig. 4, we plot the maximum of the temperature increase in 3He
vapor obtained in the simulation scaled by the amplitude of the wall tem-
perature rise (dTV/DTW)MAX−1 (expressed in %) as a function of the
reduced critical temperature distance e=(Tc−Ti)/Tc. These numerical
results reproduce qualitatively well the strong vapor overheating pheno-
menon measured in SF6, also shown in Fig. 4.

As shown in Fig. 4, at the initial reduced temperature of e=10−2 the
calculated (dTV/DTW)MAX−1 (from Ref. 15) for 3He in the phase distribu-
tion of Fig. 3a is smaller than that in the phase distribution of Fig. 3c.
This shows the influence of the phase distribution on the magnitude of the
vapor overheating.

3.3. Effect of the Liquid–Vapor Transition on the Vapor Overheating

During the temperature increase in liquid and vapor due to the adia-
batic heat transfer process, only a thin layer of fluid is able to remain at
liquid–vapor coexistence, and the temperature difference between the vapor
bulk and the liquid bulk causes heat and mass flow through the interface so
as to equilibrate the chemical potential near the interface [5]. The entropy
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Fig. 4. Comparison between vapor overheating and prediction of Eq. (1). Circles
(solid lines as a guide for the eye): maximum reduced 3He vapor overheating, (dTV/
DTW)−1, computed numerically as a function of e=(Tc−Ti)/Tc with the vapor isolated
from the thermostated cell wall (Fig. 3b). Diamond: maximum reduced vapor overheat-
ing computed with the vapor in contact with the thermostated cell wall reported in
Ref. 8 (Fig. 3a). Solid line: [(“T/“P)VS /(“T/“P)

L
S ]−1 computed for 3He using the

restricted cubic model of the equation of state (EOS). Squares and triangles (dashed
lines as a guide for the eye): maximum reduced vapor overheating, (dTV/DTW)−1, deter-
mined experimentally in SF6 as a function of e. Dashed line: [(“T/“P)VS /(“T/“P)

L
S ]−1

computed for SF6 using the EOS of Ref. 21.

conservation at the interface implies [20] dmvap/dt=(lV NTV−lL NTL)/Dh,
where dmvap/dt is the rate of vaporization of liquid, Dh is the latent heat of
vaporization, and lV NTV−lL NTL is the heat transported to the interface,
which is negative at the beginning of the adiabatic heating. Hence, the
adiabatic heating process causes condensation of vapor at the interface at
the beginning of the temperature rise. This condensation was numerically
observed by Zhong and Meyer [8]. Condensation reduces the mass of
vapor and is equivalent to a weaker compression, whereas it increases the
mass of liquid and is equivalent to a larger compression. Due to condensa-
tion, vapor is less heated and liquid is more heated, leading to a vapor
overheating smaller than the one deduced from the prediction of Onuki
and Ferrell [5] [Eq. (1)]. In Fig. 4, the vapor maximum overheating
measured in SF6 is compared to the ideal overheating without any phase
change at the interface [(“T/“P)VS /(“T/“P)

L
S ]−1 [computed using the

equation of state (EOS) of Ref. 21]. The difference between them demon-
strates the weakening effect on the vapor overheating of the phase change
at the interface during the temperature change.
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The magnitude of the mass transfer at the interface occurring during
the adiabatic heat transfer process should depend mainly on the value of
tPE, the interface area, the heating surface area, and the sharpness of the
wall temperature rise (characteristic time of the temperature increase of
the walls). The comparison between the reduced 3He vapor maximum
overheating (dTV/DTW)MAX−1 and the values of [(“T/“P)VS /(“T/“P)

L
S ]−1

in Fig. 4 indicates that, even when the wall temperature rise is stepwise, the
phase change at the interface significantly weakens the vapor overheating
when e > 3×10−4. A detailed numerical investigation of the causes of the
weakening of the vapor overheating is presently in progress.

4. MODEL OF THE CHARACTERISTIC TIME OF THE PISTON
EFFECT IN A TWO-PHASE FLUID

The EOS of Ref. 21 shows that the most rapidly divergent ratios of the
thermophysical properties of liquid and vapor are (“T/“P)Lr/(“T/“P)

V
r

and (“r/“P)VT/(“r/“P)
L
T. Thus, the correction of tPE proposed by Onuki

and Ferrell [5] for the case of an inhomogeneous one-phase fluid, tPE=
L2/[DBLT (C

BL
P /OCVP)

2] (where BL labels the property of the fluid in the
boundary layer, and OCVP is the average over the sample of CV), should
not be adapted to two-phase fluids, since it is based on the assumption of
homogeneity of (“T/“P)S throughout the fluid sample. To take into
account the differences between all the thermophysical properties of liquid
and vapor, we propose a simple model of adiabatic heat transfer in two-
phase fluids, where heat and mass transfer between the two phases are
neglected during the period of efficiency of the adiabatic heat transfer. This
is equivalent to assuming an adiabatic, freely moving piston in place of the
fluid interface, as shown schematically in Fig. 3d, and both phases, initially
at coexistence, evolve as one-phase fluids during the temperature rise. The
assumed phase distribution is the one encountered in low gravity, without
contact between vapor and the thermostated cell walls.

The same type of thermodynamic transformation as performed by
Onuki et al. [2] leads to the following equation of evolution of the tem-
perature in the bulk liquid TbulkL :

“TbulkL
“t
=(cL−1)

Q̇
rLCLVW
11+FV 1o

V
S

oLS
−122

−1

(2)

where c is the usual ratio of the specific heats, Q̇ is the rate of heat injected
into the liquid HBL, W is the volume of the sample, FV is the vapor volume
fraction, and oS=r−1(“r/“P)S. H=1+FV((o

V
S /o

L
S )−1) accounts for the

112 Wunenburger et al.



mean compressibility of the two-phase fluid, which is larger than the
compressibility of the liquid. Assuming a pure diffusive temperature profile
in the liquid HBL as in Ref. 2, the time derivative of the total heat injected
into the HBL reads Q̇=lLA(TW−T

bulk
L )/(pD

L
Tt), where A is the surface of

the heating wall and DLT is the thermal diffusivity of the liquid. The char-
acteristic time scale associated with the piston effect, which is the time
needed for TbulkL to reach TW, is equal to tPE=pL2/[D

L
T(c−1)

2] for a one-
phase homogeneous near-critical liquid [2] corrected by the factor H2:

tPE=
pL2

DLT(c
L−1)2

H2 (3)

where L=W/A. H > 1, implying that the piston effect characteristic time
scale is larger for a two-phase fluid than for a one-phase liquid at the same
temperature. The reason for this difference is the larger compressibility of
vapor compared to liquid (this property is also responsible for the decrease
in the sound speed in two-phase fluids). In Fig. 5 the variation of tPE as a
function of Tc−T is shown for a one-phase liquid, a one-phase vapor, and
a two-phase fluid with L=1mm. Also shown is the characteristic time
scale of isobaric thermal diffusion L2/DT, computed with L=1mm for

Fig. 5. The different characteristic time scales,
expressed in seconds, of the piston effect tPE and
isobaric thermal diffusion L2/DT, computed for
a characteristic length scale, L=1mm, for SF6
using the EOS of Ref. 21 and the values of DT
given in Ref. 22, as a function ofTc−T.
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SF6 using the EOS of Ref. 21 and the values of DT given in Ref. 22. Note
that the difference between tPE for a one-phase liquid and tPE for this model
is found to be significant for Tc−T > 1K.

5. CONCLUSION

As shown experimentally, the adiabatic heat transfer in near-critical
two-phase fluids can lead to the paradoxical overheating of vapor. Our 1-D
numerical simulations show that the qualitative explanation presented in
Section 3.1 of the influence of the phase distribution on the magnitude of
the vapor overheating is relevant. Numerical investigation of the effect of
phase change on the magnitude of the vapor overheating is in progress.
The model for the characteristic piston effect time scale in two-phase fluids
presented in Section 4 takes into account the difference in thermophysical
properties between liquid and vapor. A further improvement of this model
would be to include the effect of phase change on tPE. Moreover, the vali-
dity of this model should be tested experimentally.
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